ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.18178
31
1

Games of Knightian Uncertainty as AGI testbeds

26 June 2024
Spyridon Samothrakis
Dennis J. N. J. Soemers
Damian Machlanski
ArXivPDFHTML
Abstract

Arguably, for the latter part of the late 20th and early 21st centuries, games have been seen as the drosophila of AI. Games are a set of exciting testbeds, whose solutions (in terms of identifying optimal players) would lead to machines that would possess some form of general intelligence, or at the very least help us gain insights toward building intelligent machines. Following impressive successes in traditional board games like Go, Chess, and Poker, but also video games like the Atari 2600 collection, it is clear that this is not the case. Games have been attacked successfully, but we are nowhere near AGI developments (or, as harsher critics might say, useful AI developments!). In this short vision paper, we argue that for game research to become again relevant to the AGI pathway, we need to be able to address \textit{Knightian uncertainty} in the context of games, i.e. agents need to be able to adapt to rapid changes in game rules on the fly with no warning, no previous data, and no model access.

View on arXiv
Comments on this paper