ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.17960
28
2

MAGIC: Meta-Ability Guided Interactive Chain-of-Distillation for Effective-and-Efficient Vision-and-Language Navigation

25 June 2024
Liuyi Wang
Zongtao He
Mengjiao Shen
Jingwei Yang
Chengju Liu
Qijun Chen
    VLM
ArXivPDFHTML
Abstract

Despite the remarkable developments of recent large models in Embodied Artificial Intelligence (E-AI), their integration into robotics is hampered by their excessive parameter sizes and computational demands. Towards the Vision-and-Language Navigation (VLN) task, a core task in E-AI, this paper reveals the great potential of using knowledge distillation for obtaining lightweight student models by proposing a Meta-Ability Guided Interactive Chain-of-distillation (MAGIC) method. Specifically, a Meta-Ability Knowledge Distillation (MAKD) framework is proposed for decoupling and refining the necessary meta-abilities of VLN agents. A Meta-Knowledge Randomization Weighting (MKRW) and a Meta-Knowledge Transferable Determination (MKTD) module are incorporated to dynamically adjust aggregation weights at the meta-ability and sample levels, respectively. Move beyond the traditional one-step unidirectional distillation, an Interactive Chain-of-Distillation (ICoD) learning strategy is proposed to allow students to give feedback to teachers, forming a new multi-step teacher-student co-evolution pipeline. Remarkably, on the R2R test unseen public leaderboard, our smallest model, MAGIC-S, with only 5% (11M) of the teacher's size, outperforms all previous methods under the same training data. Additionally, our largest model, MAGIC-L, surpasses the previous state-of-the-art by 5.84% in SPL and 3.18% in SR. Furthermore, a new dataset was collected and annotated from our living environments, where MAGIC-S demonstrated superior performance and real-time efficiency. Our code is publicly available on https://github.com/CrystalSixone/VLN-MAGIC.

View on arXiv
Comments on this paper