ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.15883
39
1

SimSMoE: Solving Representational Collapse via Similarity Measure

22 June 2024
Giang Do
Hung Le
T. Tran
    MoE
ArXivPDFHTML
Abstract

Sparse mixture of experts (SMoE) have emerged as an effective approach for scaling large language models while keeping a constant computational cost. Regardless of several notable successes of SMoE, effective training such architecture remains elusive due to the representation collapse problem, which in turn harms model performance and causes parameter redundancy. In this work, we present Similarity-based Sparse Mixture of Experts (SimSMoE), a novel similarity of neural network algorithm, that guarantees a solution to address the representation collapse issue between experts given a fixed FLOPs budget. We conduct extensive empirical evaluations on three large language models for both Pre-training and Fine-tuning tasks to illustrate the efficacy, robustness, and scalability of our method. The results demonstrate that SimSMoE significantly enhances existing routing policy and outperforms other SMoE training methods in performance for the tasks.

View on arXiv
Comments on this paper