ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.15253
26
3

Fingerprint Membership and Identity Inference Against Generative Adversarial Networks

21 June 2024
Saverio Cavasin
Daniele Mari
Simone Milani
Mauro Conti
    AAML
ArXivPDFHTML
Abstract

Generative models are gaining significant attention as potential catalysts for a novel industrial revolution. Since automated sample generation can be useful to solve privacy and data scarcity issues that usually affect learned biometric models, such technologies became widely spread in this field. In this paper, we assess the vulnerabilities of generative machine learning models concerning identity protection by designing and testing an identity inference attack on fingerprint datasets created by means of a generative adversarial network. Experimental results show that the proposed solution proves to be effective under different configurations and easily extendable to other biometric measurements.

View on arXiv
Comments on this paper