ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.13411
71
0
v1v2 (latest)

Composite Concept Extraction through Backdooring

19 June 2024
Banibrata Ghosh
Haripriya Harikumar
Khoa D. Doan
Svetha Venkatesh
Santu Rana
ArXiv (abs)PDFHTML
Abstract

Learning composite concepts, such as \textquotedbl red car\textquotedbl , from individual examples -- like a white car representing the concept of \textquotedbl car\textquotedbl{} and a red strawberry representing the concept of \textquotedbl red\textquotedbl -- is inherently challenging. This paper introduces a novel method called Composite Concept Extractor (CoCE), which leverages techniques from traditional backdoor attacks to learn these composite concepts in a zero-shot setting, requiring only examples of individual concepts. By repurposing the trigger-based model backdooring mechanism, we create a strategic distortion in the manifold of the target object (e.g., \textquotedbl car\textquotedbl ) induced by example objects with the target property (e.g., \textquotedbl red\textquotedbl ) from objects \textquotedbl red strawberry\textquotedbl , ensuring the distortion selectively affects the target objects with the target property. Contrastive learning is then employed to further refine this distortion, and a method is formulated for detecting objects that are influenced by the distortion. Extensive experiments with in-depth analysis across different datasets demonstrate the utility and applicability of our proposed approach.

View on arXiv
Comments on this paper