ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.11493
23
0

Two-point Equidistant Projection and Degree-of-interest Filtering for Smooth Exploration of Geo-referenced Networks

17 June 2024
Max Franke
Samuel Beck
Steffen Koch
ArXivPDFHTML
Abstract

The visualization and interactive exploration of geo-referenced networks poses challenges if the network's nodes are not evenly distributed. Our approach proposes new ways of realizing animated transitions for exploring such networks from an ego-perspective. We aim to reduce the required screen estate while maintaining the viewers' mental map of distances and directions. A preliminary study provides first insights of the comprehensiveness of animated geographic transitions regarding directional relationships between start and end point in different projections. Two use cases showcase how ego-perspective graph exploration can be supported using less screen space than previous approaches.

View on arXiv
Comments on this paper