ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.10833
118
41
v1v2 (latest)

A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery

16 June 2024
Yu Zhang
Xiusi Chen
Bowen Jin
Sheng Wang
Shuiwang Ji
Wei Wang
Jiawei Han
ArXiv (abs)PDFHTMLGithub (577★)
Abstract

In many scientific fields, large language models (LLMs) have revolutionized the way with which text and other modalities of data (e.g., molecules and proteins) are dealt, achieving superior performance in various applications and augmenting the scientific discovery process. Nevertheless, previous surveys on scientific LLMs often concentrate on one to two fields or a single modality. In this paper, we aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs regarding their architectures and pre-training techniques. To this end, we comprehensively survey over 250 scientific LLMs, discuss their commonalities and differences, as well as summarize pre-training datasets and evaluation tasks for each field and modality. Moreover, we investigate how LLMs have been deployed to benefit scientific discovery. Resources related to this survey are available at https://github.com/yuzhimanhua/Awesome-Scientific-Language-Models.

View on arXiv
Comments on this paper