ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.09677
21
0

SAGA: Synthesis Augmentation with Genetic Algorithms for In-Memory Sequence Optimization

14 June 2024
Andey Robins
Mike Borowczak
ArXivPDFHTML
Abstract

The von-Neumann architecture has a bottleneck which limits the speed at which data can be made available for computation. To combat this problem, novel paradigms for computing are being developed. One such paradigm, known as in-memory computing, interleaves computation with the storage of data within the same circuits. MAGIC, or Memristor Aided Logic, is an approach which uses memory circuits which physically perform computation through write operations to memory. Sequencing these operations is a computationally difficult problem which is directly correlated with the cost of solutions using MAGIC based in-memory computation. SAGA models the execution sequences as a topological sorting problem which makes the optimization well-suited for genetic algorithms. We then detail the formation and implementation of these genetic algorithms and evaluate them over a number of open circuit implementations. The memory-footprint needed for evaluating each of these circuits is decreased by up to 52% from existing, greedy-algorithm-based optimization solutions. Over the 10 benchmark circuits evaluated, these modifications lead to an overall improvement in the efficiency of in-memory circuit evaluation of 128% in the best case and 27.5% on average.

View on arXiv
Comments on this paper