ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.07310
32
2

MM-KWS: Multi-modal Prompts for Multilingual User-defined Keyword Spotting

11 June 2024
Zhiqi Ai
Zhiyong Chen
Shugong Xu
ArXivPDFHTML
Abstract

In this paper, we propose MM-KWS, a novel approach to user-defined keyword spotting leveraging multi-modal enrollments of text and speech templates. Unlike previous methods that focus solely on either text or speech features, MM-KWS extracts phoneme, text, and speech embeddings from both modalities. These embeddings are then compared with the query speech embedding to detect the target keywords. To ensure the applicability of MM-KWS across diverse languages, we utilize a feature extractor incorporating several multilingual pre-trained models. Subsequently, we validate its effectiveness on Mandarin and English tasks. In addition, we have integrated advanced data augmentation tools for hard case mining to enhance MM-KWS in distinguishing confusable words. Experimental results on the LibriPhrase and WenetPhrase datasets demonstrate that MM-KWS outperforms prior methods significantly.

View on arXiv
Comments on this paper