ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.06893
59
16

Transformers Provably Learn Sparse Token Selection While Fully-Connected Nets Cannot

11 June 2024
Zixuan Wang
Stanley Wei
Daniel Hsu
Jason D. Lee
ArXiv (abs)PDFHTML
Abstract

The transformer architecture has prevailed in various deep learning settings due to its exceptional capabilities to select and compose structural information. Motivated by these capabilities, Sanford et al. proposed the sparse token selection task, in which transformers excel while fully-connected networks (FCNs) fail in the worst case. Building upon that, we strengthen the FCN lower bound to an average-case setting and establish an algorithmic separation of transformers over FCNs. Specifically, a one-layer transformer trained with gradient descent provably learns the sparse token selection task and, surprisingly, exhibits strong out-of-distribution length generalization. We provide empirical simulations to justify our theoretical findings.

View on arXiv
Comments on this paper