ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.06746
39
0

Multi-Objective Neural Architecture Search for In-Memory Computing

10 June 2024
Md Hasibul Amin
Mohammadreza Mohammadi
Ramtin Zand
ArXivPDFHTML
Abstract

In this work, we employ neural architecture search (NAS) to enhance the efficiency of deploying diverse machine learning (ML) tasks on in-memory computing (IMC) architectures. Initially, we design three fundamental components inspired by the convolutional layers found in VGG and ResNet models. Subsequently, we utilize Bayesian optimization to construct a convolutional neural network (CNN) model with adaptable depths, employing these components. Through the Bayesian search algorithm, we explore a vast search space comprising over 640 million network configurations to identify the optimal solution, considering various multi-objective cost functions like accuracy/latency and accuracy/energy. Our evaluation of this NAS approach for IMC architecture deployment spans three distinct image classification datasets, demonstrating the effectiveness of our method in achieving a balanced solution characterized by high accuracy and reduced latency and energy consumption.

View on arXiv
Comments on this paper