ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.06631
25
1

Hinge-FM2I: An Approach using Image Inpainting for Interpolating Missing Data in Univariate Time Series

8 June 2024
Noufel Saad
Maaroufi Nadir
Najib Mehdi
Bakhouya Mohamed
ArXivPDFHTML
Abstract

Accurate time series forecasts are crucial for various applications, such as traffic management, electricity consumption, and healthcare. However, limitations in models and data quality can significantly impact forecasts accuracy. One common issue with data quality is the absence of data points, referred to as missing data. It is often caused by sensor malfunctions, equipment failures, or human errors. This paper proposes Hinge-FM2I, a novel method for handling missing data values in univariate time series data. Hinge-FM2I builds upon the strengths of the Forecasting Method by Image Inpainting (FM2I). FM2I has proven effective, but selecting the most accurate forecasts remain a challenge. To overcome this issue, we proposed a selection algorithm. Inspired by door hinges, Hinge-FM2I drops a data point either before or after the gap (left/right-hinge), then use FM2I for imputation, and then select the imputed gap based on the lowest error of the dropped data point. Hinge-FM2I was evaluated on a comprehensive sample composed of 1356 time series, extracted from the M3 competition benchmark dataset, with missing value rates ranging from 3.57\% to 28.57\%. Experimental results demonstrate that Hinge-FM2I significantly outperforms established methods such as, linear/spline interpolation, K-Nearest Neighbors (K-NN), and ARIMA. Notably, Hinge-FM2I achieves an average Symmetric Mean Absolute Percentage Error (sMAPE) score of 5.6\% for small gaps, and up to 10\% for larger ones. These findings highlight the effectiveness of Hinge-FM2I as a promising new method for addressing missing values in univariate time series data.

View on arXiv
Comments on this paper