90
0

Integrating Text and Image Pre-training for Multi-modal Algorithmic Reasoning

Abstract

In this paper, we present our solution for SMART-101 Challenge of CVPR Multi-modal Algorithmic Reasoning Task 2024. Unlike traditional visual questions and answer tasks, this challenge evaluates abstraction, deduction and generalization ability of neural network in solving visuo-linguistic puzzles designed for specially children in the 6-8 age group. Our model is based on two pre-trained models, dedicated to extract features from text and image respectively. To integrate the features from different modalities, we employed a fusion layer with attention mechanism. We explored different text and image pre-trained models, and fine-tune the integrated classifier on the SMART-101 dataset. Experiment results show that under the data splitting style of puzzle split, our proposed integrated classifier achieves superior performance, verifying the effectiveness of multi-modal pre-trained representations.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.