ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.05305
24
0

YouTube SFV+HDR Quality Dataset

8 June 2024
Yilin Wang
Joong Gon Yim
N. Birkbeck
Balu Adsumilli
    AI4TS
ArXivPDFHTML
Abstract

The popularity of Short form videos (SFV) has grown dramatically in the past few years, and has become a phenomenal video category with billions of viewers. Meanwhile, High Dynamic Range (HDR) as an advanced feature also becomes more and more popular on video sharing platforms. As a hot topic with huge impact, SFV and HDR bring new questions to video quality research: 1) is SFV+HDR quality assessment significantly different from traditional User Generated Content (UGC) quality assessment? 2) do objective quality metrics designed for traditional UGC still work well for SFV+HDR? To answer the above questions, we created the first large scale SFV+HDR dataset with reliable subjective quality scores, covering 10 popular content categories. Further, we also introduce a general sampling framework to maximize the representativeness of the dataset. We provided a comprehensive analysis of subjective quality scores for Short form SDR and HDR videos, and discuss the reliability of state-of-the-art UGC quality metrics and potential improvements.

View on arXiv
Comments on this paper