18
0

Behavior Structformer: Learning Players Representations with Structured Tokenization

Abstract

In this paper, we introduce the Behavior Structformer, a method for modeling user behavior using structured tokenization within a Transformer-based architecture. By converting tracking events into dense tokens, this approach enhances model training efficiency and effectiveness. We demonstrate its superior performance through ablation studies and benchmarking against traditional tabular and semi-structured baselines. The results indicate that structured tokenization with sequential processing significantly improves behavior modeling.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.