65
0

Conv-INR: Convolutional Implicit Neural Representation for Multimodal Visual Signals

Zhicheng Cai
Abstract

Implicit neural representation (INR) has recently emerged as a promising paradigm for signal representations. Typically, INR is parameterized by a multiplayer perceptron (MLP) which takes the coordinates as the inputs and generates corresponding attributes of a signal. However, MLP-based INRs face two critical issues: i) individually considering each coordinate while ignoring the connections; ii) suffering from the spectral bias thus failing to learn high-frequency components. While target visual signals usually exhibit strong local structures and neighborhood dependencies, and high-frequency components are significant in these signals, the issues harm the representational capacity of INRs. This paper proposes Conv-INR, the first INR model fully based on convolution. Due to the inherent attributes of convolution, Conv-INR can simultaneously consider adjacent coordinates and learn high-frequency components effectively. Compared to existing MLP-based INRs, Conv-INR has better representational capacity and trainability without requiring primary function expansion. We conduct extensive experiments on four tasks, including image fitting, CT/MRI reconstruction, and novel view synthesis, Conv-INR all significantly surpasses existing MLP-based INRs, validating the effectiveness. Finally, we raise three reparameterization methods that can further enhance the performance of the vanilla Conv-INR without introducing any extra inference cost.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.