ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.03799
34
0

Enhanced Semantic Segmentation Pipeline for WeatherProof Dataset Challenge

6 June 2024
Nan Zhang
Xidan Zhang
Jianing Wei
Fangjun Wang
Zhiming Tan
    MDE
ArXivPDFHTML
Abstract

This report describes the winning solution to the WeatherProof Dataset Challenge (CVPR 2024 UG2+ Track 3). Details regarding the challenge are available at https://cvpr2024ug2challenge.github.io/track3.html. We propose an enhanced semantic segmentation pipeline for this challenge. Firstly, we improve semantic segmentation models, using backbone pretrained with Depth Anything to improve UperNet model and SETRMLA model, and adding language guidance based on both weather and category information to InternImage model. Secondly, we introduce a new dataset WeatherProofExtra with wider viewing angle and employ data augmentation methods, including adverse weather and super-resolution. Finally, effective training strategies and ensemble method are applied to improve final performance further. Our solution is ranked 1st on the final leaderboard. Code will be available at https://github.com/KaneiGi/WeatherProofChallenge.

View on arXiv
Comments on this paper