ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02887
26
0

USM RNN-T model weights binarization

5 June 2024
Oleg Rybakov
Dmitriy Serdyuk
Chengjian Zheng
    MQ
ArXivPDFHTML
Abstract

Large-scale universal speech models (USM) are already used in production. However, as the model size grows, the serving cost grows too. Serving cost of large models is dominated by model size that is why model size reduction is an important research topic. In this work we are focused on model size reduction using weights only quantization. We present the weights binarization of USM Recurrent Neural Network Transducer (RNN-T) and show that its model size can be reduced by 15.9x times at cost of word error rate (WER) increase by only 1.9% in comparison to the float32 model. It makes it attractive for practical applications.

View on arXiv
Comments on this paper