ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02488
36
0

Language-Universal Speech Attributes Modeling for Zero-Shot Multilingual Spoken Keyword Recognition

4 June 2024
Hao Yen
Pin-Jui Ku
Sabato Marco Siniscalchi
Chin-Hui Lee
ArXivPDFHTML
Abstract

We propose a novel language-universal approach to end-to-end automatic spoken keyword recognition (SKR) leveraging upon (i) a self-supervised pre-trained model, and (ii) a set of universal speech attributes (manner and place of articulation). Specifically, Wav2Vec2.0 is used to generate robust speech representations, followed by a linear output layer to produce attribute sequences. A non-trainable pronunciation model then maps sequences of attributes into spoken keywords in a multilingual setting. Experiments on the Multilingual Spoken Words Corpus show comparable performances to character- and phoneme-based SKR in seen languages. The inclusion of domain adversarial training (DAT) improves the proposed framework, outperforming both character- and phoneme-based SKR approaches with 13.73% and 17.22% relative word error rate (WER) reduction in seen languages, and achieves 32.14% and 19.92% WER reduction for unseen languages in zero-shot settings.

View on arXiv
Comments on this paper