ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02348
30
0

AMOSL: Adaptive Modality-wise Structure Learning in Multi-view Graph Neural Networks For Enhanced Unified Representation

4 June 2024
Peiyu Liang
Hongchang Gao
Xubin He
ArXivPDFHTML
Abstract

While Multi-view Graph Neural Networks (MVGNNs) excel at leveraging diverse modalities for learning object representation, existing methods assume identical local topology structures across modalities that overlook real-world discrepancies. This leads MVGNNs straggles in modality fusion and representations denoising. To address these issues, we propose adaptive modality-wise structure learning (AMoSL). AMoSL captures node correspondences between modalities via optimal transport, and jointly learning with graph embedding. To enable efficient end-to-end training, we employ an efficient solution for the resulting complex bilevel optimization problem. Furthermore, AMoSL adapts to downstream tasks through unsupervised learning on inter-modality distances. The effectiveness of AMoSL is demonstrated by its ability to train more accurate graph classifiers on six benchmark datasets.

View on arXiv
Comments on this paper