ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02074
29
0

FaceCom: Towards High-fidelity 3D Facial Shape Completion via Optimization and Inpainting Guidance

4 June 2024
Yinglong Li
Hongyu Wu
Xiaogang Wang
Qingzhao Qin
Yijiao Zhao
Yong wang
Aimin Hao
    3DH
ArXivPDFHTML
Abstract

We propose FaceCom, a method for 3D facial shape completion, which delivers high-fidelity results for incomplete facial inputs of arbitrary forms. Unlike end-to-end shape completion methods based on point clouds or voxels, our approach relies on a mesh-based generative network that is easy to optimize, enabling it to handle shape completion for irregular facial scans. We first train a shape generator on a mixed 3D facial dataset containing 2405 identities. Based on the incomplete facial input, we fit complete faces using an optimization approach under image inpainting guidance. The completion results are refined through a post-processing step. FaceCom demonstrates the ability to effectively and naturally complete facial scan data with varying missing regions and degrees of missing areas. Our method can be used in medical prosthetic fabrication and the registration of deficient scanning data. Our experimental results demonstrate that FaceCom achieves exceptional performance in fitting and shape completion tasks. The code is available at https://github.com/dragonylee/FaceCom.git.

View on arXiv
Comments on this paper