ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.20700
23
0

Self-degraded contrastive domain adaptation for industrial fault diagnosis with bi-imbalanced data

31 May 2024
Gecheng Chen
Zeyu Yang
Chengwen Luo
Jian-qiang Li
ArXivPDFHTML
Abstract

Modern industrial fault diagnosis tasks often face the combined challenge of distribution discrepancy and bi-imbalance. Existing domain adaptation approaches pay little attention to the prevailing bi-imbalance, leading to poor domain adaptation performance or even negative transfer. In this work, we propose a self-degraded contrastive domain adaptation (Sd-CDA) diagnosis framework to handle the domain discrepancy under the bi-imbalanced data. It first pre-trains the feature extractor via imbalance-aware contrastive learning based on model pruning to learn the feature representation efficiently in a self-supervised manner. Then it forces the samples away from the domain boundary based on supervised contrastive domain adversarial learning (SupCon-DA) and ensures the features generated by the feature extractor are discriminative enough. Furthermore, we propose the pruned contrastive domain adversarial learning (PSupCon-DA) to pay automatically re-weighted attention to the minorities to enhance the performance towards bi-imbalanced data. We show the superiority of the proposed method via two experiments.

View on arXiv
Comments on this paper