88
1

"Forgetting" in Machine Learning and Beyond: A Survey

Abstract

This survey investigates the multifaceted nature of forgetting in machine learning, drawing insights from neuroscientific research that posits forgetting as an adaptive function rather than a defect, enhancing the learning process and preventing overfitting. This survey focuses on the benefits of forgetting and its applications across various machine learning sub-fields that can help improve model performance and enhance data privacy. Moreover, the paper discusses current challenges, future directions, and ethical considerations regarding the integration of forgetting mechanisms into machine learning models.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.