45
4

Multi-View People Detection in Large Scenes via Supervised View-Wise Contribution Weighting

Abstract

Recent deep learning-based multi-view people detection (MVD) methods have shown promising results on existing datasets. However, current methods are mainly trained and evaluated on small, single scenes with a limited number of multi-view frames and fixed camera views. As a result, these methods may not be practical for detecting people in larger, more complex scenes with severe occlusions and camera calibration errors. This paper focuses on improving multi-view people detection by developing a supervised view-wise contribution weighting approach that better fuses multi-camera information under large scenes. Besides, a large synthetic dataset is adopted to enhance the model's generalization ability and enable more practical evaluation and comparison. The model's performance on new testing scenes is further improved with a simple domain adaptation technique. Experimental results demonstrate the effectiveness of our approach in achieving promising cross-scene multi-view people detection performance. See code here: https://vcc.tech/research/2024/MVD.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.