ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.19885
29
2

Fourier Controller Networks for Real-Time Decision-Making in Embodied Learning

30 May 2024
Hengkai Tan
Songming Liu
Kai Ma
Chengyang Ying
Xingxing Zhang
Hang Su
Jun Zhu
ArXivPDFHTML
Abstract

Transformer has shown promise in reinforcement learning to model time-varying features for obtaining generalized low-level robot policies on diverse robotics datasets in embodied learning. However, it still suffers from the issues of low data efficiency and high inference latency. In this paper, we propose to investigate the task from a new perspective of the frequency domain. We first observe that the energy density in the frequency domain of a robot's trajectory is mainly concentrated in the low-frequency part. Then, we present the Fourier Controller Network (FCNet), a new network that uses Short-Time Fourier Transform (STFT) to extract and encode time-varying features through frequency domain interpolation. In order to do real-time decision-making, we further adopt FFT and Sliding DFT methods in the model architecture to achieve parallel training and efficient recurrent inference. Extensive results in both simulated (e.g., D4RL) and real-world environments (e.g., robot locomotion) demonstrate FCNet's substantial efficiency and effectiveness over existing methods such as Transformer, e.g., FCNet outperforms Transformer on multi-environmental robotics datasets of all types of sizes (from 1.9M to 120M). The project page and code can be found https://thkkk.github.io/fcnet.

View on arXiv
Comments on this paper