26
2

A Deep Convolutional Neural Network-based Model for Aspect and Polarity Classification in Hausa Movie Reviews

Abstract

Aspect-based Sentiment Analysis (ABSA) is crucial for understanding sentiment nuances in text, especially across diverse languages and cultures. This paper introduces a novel Deep Convolutional Neural Network (CNN)-based model tailored for aspect and polarity classification in Hausa movie reviews, an underrepresented language in sentiment analysis research. A comprehensive Hausa ABSA dataset is created, filling a significant gap in resource availability. The dataset, preprocessed using sci-kit-learn for TF-IDF transformation, includes manually annotated aspect-level feature ontology words and sentiment polarity assignments. The proposed model combines CNNs with attention mechanisms for aspect-word prediction, leveraging contextual information and sentiment polarities. With 91% accuracy on aspect term extraction and 92% on sentiment polarity classification, the model outperforms traditional machine models, offering insights into specific aspects and sentiments. This study advances ABSA research, particularly in underrepresented languages, with implications for cross-cultural linguistic research.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.