ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.19222
34
0

Lower Bounds on the Expressivity of Recurrent Neural Language Models

29 May 2024
Anej Svete
Franz Nowak
Anisha Mohamed Sahabdeen
Ryan Cotterell
ArXivPDFHTML
Abstract

The recent successes and spread of large neural language models (LMs) call for a thorough understanding of their computational ability. Describing their computational abilities through LMs' \emph{representational capacity} is a lively area of research. However, investigation into the representational capacity of neural LMs has predominantly focused on their ability to \emph{recognize} formal languages. For example, recurrent neural networks (RNNs) with Heaviside activations are tightly linked to regular languages, i.e., languages defined by finite-state automata (FSAs). Such results, however, fall short of describing the capabilities of RNN \emph{language models} (LMs), which are definitionally \emph{distributions} over strings. We take a fresh look at the representational capacity of RNN LMs by connecting them to \emph{probabilistic} FSAs and demonstrate that RNN LMs with linearly bounded precision can express arbitrary regular LMs.

View on arXiv
Comments on this paper