ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.19053
18
1

Multiscale Spatio-Temporal Enhanced Short-term Load Forecasting of Electric Vehicle Charging Stations

29 May 2024
Zongbao Zhang
Jiao Hao
Wenmeng Zhao
Yan Liu
Yaohui Huang
Xinhang Luo
ArXivPDFHTML
Abstract

The rapid expansion of electric vehicles (EVs) has rendered the load forecasting of electric vehicle charging stations (EVCS) increasingly critical. The primary challenge in achieving precise load forecasting for EVCS lies in accounting for the nonlinear of charging behaviors, the spatial interactions among different stations, and the intricate temporal variations in usage patterns. To address these challenges, we propose a Multiscale Spatio-Temporal Enhanced Model (MSTEM) for effective load forecasting at EVCS. MSTEM incorporates a multiscale graph neural network to discern hierarchical nonlinear temporal dependencies across various time scales. Besides, it also integrates a recurrent learning component and a residual fusion mechanism, enhancing its capability to accurately capture spatial and temporal variations in charging patterns. The effectiveness of the proposed MSTEM has been validated through comparative analysis with six baseline models using three evaluation metrics. The case studies utilize real-world datasets for both fast and slow charging loads at EVCS in Perth, UK. The experimental results demonstrate the superiority of MSTEM in short-term continuous load forecasting for EVCS.

View on arXiv
Comments on this paper