ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.18688
24
6

Efficient Preference-based Reinforcement Learning via Aligned Experience Estimation

29 May 2024
Fengshuo Bai
Rui Zhao
Hongming Zhang
Sijia Cui
Ying Wen
Yaodong Yang
Bo Xu
Lei Han
    OffRL
ArXivPDFHTML
Abstract

Preference-based reinforcement learning (PbRL) has shown impressive capabilities in training agents without reward engineering. However, a notable limitation of PbRL is its dependency on substantial human feedback. This dependency stems from the learning loop, which entails accurate reward learning compounded with value/policy learning, necessitating a considerable number of samples. To boost the learning loop, we propose SEER, an efficient PbRL method that integrates label smoothing and policy regularization techniques. Label smoothing reduces overfitting of the reward model by smoothing human preference labels. Additionally, we bootstrap a conservative estimate Q^\widehat{Q}Q​ using well-supported state-action pairs from the current replay memory to mitigate overestimation bias and utilize it for policy learning regularization. Our experimental results across a variety of complex tasks, both in online and offline settings, demonstrate that our approach improves feedback efficiency, outperforming state-of-the-art methods by a large margin. Ablation studies further reveal that SEER achieves a more accurate Q-function compared to prior work.

View on arXiv
Comments on this paper