47
0

RealitySummary: On-Demand Mixed Reality Document Enhancement using Large Language Models

Abstract

We introduce RealitySummary, a mixed reality reading assistant that can enhance any printed or digital document using on-demand text extraction, summarization, and augmentation. While augmented reading tools promise to enhance physical reading experiences with overlaid digital content, prior systems have typically required pre-processed documents, which limits their generalizability and real-world use cases. In this paper, we explore on-demand document augmentation by leveraging large language models. To understand generalizable techniques for diverse documents, we first conducted an exploratory design study which identified five categories of document enhancements (summarization, augmentation, navigation, comparison, and extraction). Based on this, we developed a proof-of-concept system that can automatically extract and summarize text using Google Cloud OCR and GPT-4, then embed information around documents using a Microsoft Hololens 2 and Apple Vision Pro. We demonstrate real-time examples of six specific document augmentations: 1) summaries, 2) comparison tables, 3) timelines, 4) keyword lists, 5) summary highlighting, and 6) information cards. Results from a usability study (N=12) and in-the-wild study (N=11) highlight the potential benefits of on-demand MR document enhancement and opportunities for future research.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.