ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.18111
31
5

ATM: Adversarial Tuning Multi-agent System Makes a Robust Retrieval-Augmented Generator

28 May 2024
Junda Zhu
Lingyong Yan
Haibo Shi
Dawei Yin
Lei Sha
    RALM
ArXivPDFHTML
Abstract

Large language models (LLMs) are proven to benefit a lot from retrieval-augmented generation (RAG) in alleviating hallucinations confronted with knowledge-intensive questions. RAG adopts information retrieval techniques to inject external knowledge from semantic-relevant documents as input contexts. However, due to today's Internet being flooded with numerous noisy and fabricating content, it is inevitable that RAG systems are vulnerable to these noises and prone to respond incorrectly. To this end, we propose to optimize the retrieval-augmented Generator with a Adversarial Tuning Multi-agent system (ATM). The ATM steers the Generator to have a robust perspective of useful documents for question answering with the help of an auxiliary Attacker agent. The Generator and the Attacker are tuned adversarially for several iterations. After rounds of multi-agent iterative tuning, the Generator can eventually better discriminate useful documents amongst fabrications. The experimental results verify the effectiveness of ATM and we also observe that the Generator can achieve better performance compared to state-of-the-art baselines.

View on arXiv
Comments on this paper