80
1

How to train your ViT for OOD Detection

Maximilian Mueller
Matthias Hein
Abstract

VisionTransformers have been shown to be powerful out-of-distribution detectors for ImageNet-scale settings when finetuned from publicly available checkpoints, often outperforming other model types on popular benchmarks. In this work, we investigate the impact of both the pretraining and finetuning scheme on the performance of ViTs on this task by analyzing a large pool of models. We find that the exact type of pretraining has a strong impact on which method works well and on OOD detection performance in general. We further show that certain training schemes might only be effective for a specific type of out-distribution, but not in general, and identify a best-practice training recipe.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.