ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.16156
31
9

Mixture of In-Context Prompters for Tabular PFNs

25 May 2024
Derek Xu
Olcay Cirit
Reza Asadi
Yizhou Sun
Wei Wang
ArXivPDFHTML
Abstract

Recent benchmarks found In-Context Learning (ICL) outperforms both deep learning and tree-based algorithms on small tabular datasets. However, on larger datasets, ICL for tabular learning cannot run without severely compromising performance, due to its quadratic space and time complexity w.r.t. dataset size. We propose MIXTUREPFN, which both extends nearest-neighbor sampling to the state-of-the-art ICL for tabular learning model and uses bootstrapping to finetune said model on the inference-time dataset. MIXTUREPFN is the Condorcet winner across 36 diverse tabular datasets against 19 strong deep learning and tree-based baselines, achieving the highest mean rank among Top-10 aforementioned algorithms with statistical significance.

View on arXiv
Comments on this paper