ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.15636
19
0

Visualize and Paint GAN Activations

24 May 2024
Rudolf Herdt
Peter Maass
    GAN
    FAtt
ArXivPDFHTML
Abstract

We investigate how generated structures of GANs correlate with their activations in hidden layers, with the purpose of better understanding the inner workings of those models and being able to paint structures with unconditionally trained GANs. This gives us more control over the generated images, allowing to generate them from a semantic segmentation map while not requiring such a segmentation in the training data. To this end we introduce the concept of tileable features, allowing us to identify activations that work well for painting.

View on arXiv
Comments on this paper