ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.15430
23
0

Counterexample-Guided Repair of Reinforcement Learning Systems Using Safety Critics

24 May 2024
David Boetius
Stefan Leue
ArXivPDFHTML
Abstract

Naively trained Deep Reinforcement Learning agents may fail to satisfy vital safety constraints. To avoid costly retraining, we may desire to repair a previously trained reinforcement learning agent to obviate unsafe behaviour. We devise a counterexample-guided repair algorithm for repairing reinforcement learning systems leveraging safety critics. The algorithm jointly repairs a reinforcement learning agent and a safety critic using gradient-based constrained optimisation.

View on arXiv
Comments on this paper