ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.14334
51
0

Hierarchical Salient Patch Identification for Interpretable Fundus Disease Localization

23 May 2024
Yitao Peng
Lianghua He
D. Hu
    FAtt
ArXivPDFHTML
Abstract

With the widespread application of deep learning technology in medical image analysis, the effective explanation of model predictions and improvement of diagnostic accuracy have become urgent problems that need to be solved. Attribution methods have become key tools to help doctors better understand the diagnostic basis of models, and are used to explain and localize diseases in medical images. However, previous methods suffer from inaccurate and incomplete localization problems for fundus diseases with complex and diverse structures. To solve these problems, we propose a weakly supervised interpretable fundus disease localization method called hierarchical salient patch identification (HSPI) that can achieve interpretable disease localization using only image-level labels and a neural network classifier (NNC). First, we propose salient patch identification (SPI), which divides the image into several patches and optimizes consistency loss to identify which patch in the input image is most important for the network's prediction, in order to locate the disease. Second, we propose a hierarchical identification strategy to force SPI to analyze the importance of different areas to neural network classifier's prediction to comprehensively locate disease areas. Conditional peak focusing is then introduced to ensure that the mask vector can accurately locate the disease area. Finally, we propose patch selection based on multi-sized intersections to filter out incorrectly or additionally identified non-disease regions. We conduct disease localization experiments on fundus image datasets and achieve the best performance on multiple evaluation metrics compared to previous interpretable attribution methods. Additional ablation studies are conducted to verify the effectiveness of each method.

View on arXiv
Comments on this paper