ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.14162
23
0

Leveraging Semantic Segmentation Masks with Embeddings for Fine-Grained Form Classification

23 May 2024
Taylor Archibald
Tony R. Martinez
    AI4TS
ArXivPDFHTML
Abstract

Efficient categorization of historical documents is crucial for fields such as genealogy, legal research, and historical scholarship, where manual classification is impractical for large collections due to its labor-intensive and error-prone nature. To address this, we propose a representational learning strategy that integrates semantic segmentation and deep learning models such as ResNet, CLIP, Document Image Transformer (DiT), and masked auto-encoders (MAE), to generate embeddings that capture document features without predefined labels. To the best of our knowledge, we are the first to evaluate embeddings on fine-grained, unsupervised form classification. To improve these embeddings, we propose to first employ semantic segmentation as a preprocessing step. We contribute two novel datasets\unicodex2014\unicode{x2014}\unicodex2014the French 19th-century and U.S. 1950 Census records\unicodex2014\unicode{x2014}\unicodex2014to demonstrate our approach. Our results show the effectiveness of these various embedding techniques in distinguishing similar document types and indicate that applying semantic segmentation can greatly improve clustering and classification results. The census datasets are available at https://github.com/tahlor/census_forms

View on arXiv
Comments on this paper