ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.13324
14
0

Adversarial Training via Adaptive Knowledge Amalgamation of an Ensemble of Teachers

22 May 2024
Shayan Mohajer Hamidi
Linfeng Ye
    AAML
ArXivPDFHTML
Abstract

Adversarial training (AT) is a popular method for training robust deep neural networks (DNNs) against adversarial attacks. Yet, AT suffers from two shortcomings: (i) the robustness of DNNs trained by AT is highly intertwined with the size of the DNNs, posing challenges in achieving robustness in smaller models; and (ii) the adversarial samples employed during the AT process exhibit poor generalization, leaving DNNs vulnerable to unforeseen attack types. To address these dual challenges, this paper introduces adversarial training via adaptive knowledge amalgamation of an ensemble of teachers (AT-AKA). In particular, we generate a diverse set of adversarial samples as the inputs to an ensemble of teachers; and then, we adaptively amalgamate the logtis of these teachers to train a generalized-robust student. Through comprehensive experiments, we illustrate the superior efficacy of AT-AKA over existing AT methods and adversarial robustness distillation techniques against cutting-edge attacks, including AutoAttack.

View on arXiv
Comments on this paper