ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.13017
31
0

A Systematic Analysis on the Temporal Generalization of Language Models in Social Media

15 May 2024
Asahi Ushio
Jose Camacho-Collados
ArXivPDFHTML
Abstract

In machine learning, temporal shifts occur when there are differences between training and test splits in terms of time. For streaming data such as news or social media, models are commonly trained on a fixed corpus from a certain period of time, and they can become obsolete due to the dynamism and evolving nature of online content. This paper focuses on temporal shifts in social media and, in particular, Twitter. We propose a unified evaluation scheme to assess the performance of language models (LMs) under temporal shift on standard social media tasks. LMs are tested on five diverse social media NLP tasks under different temporal settings, which revealed two important findings: (i) the decrease in performance under temporal shift is consistent across different models for entity-focused tasks such as named entity recognition or disambiguation, and hate speech detection, but not significant in the other tasks analysed (i.e., topic and sentiment classification); and (ii) continuous pre-training on the test period does not improve the temporal adaptability of LMs.

View on arXiv
Comments on this paper