ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.11932
37
4

Nonequilbrium physics of generative diffusion models

20 May 2024
Zhendong Yu
Haiping Huang
    DiffM
    AI4CE
ArXivPDFHTML
Abstract

Generative diffusion models apply the concept of Langevin dynamics in physics to machine leaning, attracting a lot of interest from industrial application, but a complete picture about inherent mechanisms is still lacking. In this paper, we provide a transparent physics analysis of the diffusion models, deriving the fluctuation theorem, entropy production, Franz-Parisi potential to understand the intrinsic phase transitions discovered recently. Our analysis is rooted in non-equlibrium physics and concepts from equilibrium physics, i.e., treating both forward and backward dynamics as a Langevin dynamics, and treating the reverse diffusion generative process as a statistical inference, where the time-dependent state variables serve as quenched disorder studied in spin glass theory. This unified principle is expected to guide machine learning practitioners to design better algorithms and theoretical physicists to link the machine learning to non-equilibrium thermodynamics.

View on arXiv
Comments on this paper