38
6

Zero-Shot Stance Detection using Contextual Data Generation with LLMs

Abstract

Stance detection, the classification of attitudes expressed in a text towards a specific topic, is vital for applications like fake news detection and opinion mining. However, the scarcity of labeled data remains a challenge for this task. To address this problem, we propose Dynamic Model Adaptation with Contextual Data Generation (DyMoAdapt) that combines Few-Shot Learning and Large Language Models. In this approach, we aim to fine-tune an existing model at test time. We achieve this by generating new topic-specific data using GPT-3. This method could enhance performance by allowing the adaptation of the model to new topics. However, the results did not increase as we expected. Furthermore, we introduce the Multi Generated Topic VAST (MGT-VAST) dataset, which extends VAST using GPT-3. In this dataset, each context is associated with multiple topics, allowing the model to understand the relationship between contexts and various potential topics

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.