42
0

The First Swahili Language Scene Text Detection and Recognition Dataset

Abstract

Scene text recognition is essential in many applications, including automated translation, information retrieval, driving assistance, and enhancing accessibility for individuals with visual impairments. Much research has been done to improve the accuracy and performance of scene text detection and recognition models. However, most of this research has been conducted in the most common languages, English and Chinese. There is a significant gap in low-resource languages, especially the Swahili Language. Swahili is widely spoken in East African countries but is still an under-explored language in scene text recognition. No studies have been focused explicitly on Swahili natural scene text detection and recognition, and no dataset for Swahili language scene text detection and recognition is publicly available. We propose a comprehensive dataset of Swahili scene text images and evaluate the dataset on different scene text detection and recognition models. The dataset contains 976 images collected in different places and under various circumstances. Each image has its annotation at the word level. The proposed dataset can also serve as a benchmark dataset specific to the Swahili language for evaluating and comparing different approaches and fostering future research endeavors. The dataset is available on GitHub via this link: https://github.com/FadilaW/Swahili-STR-Dataset

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.