ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.10610
54
0

Driving Referring Video Object Segmentation with Vision-Language Pre-trained Models

17 May 2024
Zikun Zhou
Wentao Xiong
Li Zhou
Xin Li
Zhenyu He
Yaowei Wang
    VOSVLM
ArXiv (abs)PDFHTML
Abstract

The crux of Referring Video Object Segmentation (RVOS) lies in modeling dense text-video relations to associate abstract linguistic concepts with dynamic visual contents at pixel-level. Current RVOS methods typically use vision and language models pre-trained independently as backbones. As images and texts are mapped to uncoupled feature spaces, they face the arduous task of learning Vision-Language~(VL) relation modeling from scratch. Witnessing the success of Vision-Language Pre-trained (VLP) models, we propose to learn relation modeling for RVOS based on their aligned VL feature space. Nevertheless, transferring VLP models to RVOS is a deceptively challenging task due to the substantial gap between the pre-training task (image/region-level prediction) and the RVOS task (pixel-level prediction in videos). In this work, we introduce a framework named VLP-RVOS to address this transfer challenge. We first propose a temporal-aware prompt-tuning method, which not only adapts pre-trained representations for pixel-level prediction but also empowers the vision encoder to model temporal clues. We further propose to perform multi-stage VL relation modeling while and after feature extraction for comprehensive VL understanding. Besides, we customize a cube-frame attention mechanism for spatial-temporal reasoning. Extensive experiments demonstrate that our method outperforms state-of-the-art algorithms and exhibits strong generalization abilities.

View on arXiv
Comments on this paper