ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.10251
26
8

A Systematic Evaluation of Large Language Models for Natural Language Generation Tasks

16 May 2024
Xuanfan Ni
Piji Li
    ELM
    LRM
ArXivPDFHTML
Abstract

Recent efforts have evaluated large language models (LLMs) in areas such as commonsense reasoning, mathematical reasoning, and code generation. However, to the best of our knowledge, no work has specifically investigated the performance of LLMs in natural language generation (NLG) tasks, a pivotal criterion for determining model excellence. Thus, this paper conducts a comprehensive evaluation of well-known and high-performing LLMs, namely ChatGPT, ChatGLM, T5-based models, LLaMA-based models, and Pythia-based models, in the context of NLG tasks. We select English and Chinese datasets encompassing Dialogue Generation and Text Summarization. Moreover, we propose a common evaluation setting that incorporates input templates and post-processing strategies. Our study reports both automatic results, accompanied by a detailed analysis.

View on arXiv
Comments on this paper