ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.10140
38
6

Libra: Building Decoupled Vision System on Large Language Models

16 May 2024
Yifan Xu
Xiaoshan Yang
Y. Song
Changsheng Xu
    MLLM
    VLM
ArXivPDFHTML
Abstract

In this work, we introduce Libra, a prototype model with a decoupled vision system on a large language model (LLM). The decoupled vision system decouples inner-modal modeling and cross-modal interaction, yielding unique visual information modeling and effective cross-modal comprehension. Libra is trained through discrete auto-regressive modeling on both vision and language inputs. Specifically, we incorporate a routed visual expert with a cross-modal bridge module into a pretrained LLM to route the vision and language flows during attention computing to enable different attention patterns in inner-modal modeling and cross-modal interaction scenarios. Experimental results demonstrate that the dedicated design of Libra achieves a strong MLLM baseline that rivals existing works in the image-to-text scenario with merely 50 million training data, providing a new perspective for future multimodal foundation models. Code is available at https://github.com/YifanXu74/Libra.

View on arXiv
Comments on this paper