28
0

Gradient Boosted Filters For Signal Processing

Abstract

Gradient boosted decision trees have achieved remarkable success in several domains, particularly those that work with static tabular data. However, the application of gradient boosted models to signal processing is underexplored. In this work, we introduce gradient boosted filters for dynamic data, by employing Hammerstein systems in place of decision trees. We discuss the relationship of our approach to the Volterra series, providing the theoretical underpinning for its application. We demonstrate the effective generalizability of our approach with examples.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.