ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.08539
21
3

SecScore: Enhancing the CVSS Threat Metric Group with Empirical Evidences

14 May 2024
Miguel Santana
Vinicius V. Cogo
Alan Oliveira de Sá
ArXivPDFHTML
Abstract

Background: Timely prioritising and remediating vulnerabilities are paramount in the dynamic cybersecurity field, and one of the most widely used vulnerability scoring systems (CVSS) does not address the increasing likelihood of emerging an exploit code. Aims: We present SecScore, an innovative vulnerability severity score that enhances CVSS Threat metric group with statistical models from empirical evidences of real-world exploit codes. Method: SecScore adjusts the traditional CVSS score using an explainable and empirical method that more accurately and promptly captures the dynamics of exploit code development. Results: Our approach can integrate seamlessly into the assessment/prioritisation stage of several vulnerability management processes, improving the effectiveness of prioritisation and ensuring timely remediation. We provide real-world statistical analysis and models for a wide range of vulnerability types and platforms, demonstrating that SecScore is flexible according to the vulnerability's profile. Comprehensive experiments validate the value and timeliness of SecScore in vulnerability prioritisation. Conclusions: SecScore advances the vulnerability metrics theory and enhances organisational cybersecurity with practical insights.

View on arXiv
Comments on this paper