ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.08329
34
1

Cross-Dataset Generalization For Retinal Lesions Segmentation

14 May 2024
Clément Playout
Farida Cheriet
ArXiv (abs)PDFHTML
Abstract

Identifying lesions in fundus images is an important milestone toward an automated and interpretable diagnosis of retinal diseases. To support research in this direction, multiple datasets have been released, proposing groundtruth maps for different lesions. However, important discrepancies exist between the annotations and raise the question of generalization across datasets. This study characterizes several known datasets and compares different techniques that have been proposed to enhance the generalisation performance of a model, such as stochastic weight averaging, model soups and ensembles. Our results provide insights into how to combine coarsely labelled data with a finely-grained dataset in order to improve the lesions segmentation.

View on arXiv
Comments on this paper