ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.07652
35
7

G-VOILA: Gaze-Facilitated Information Querying in Daily Scenarios

13 May 2024
Zeyu Wang
Yuanchun Shi
Yuntao wang
Yuchen Yao
Kun Yan
Yuhan Wang
Lei Ji
Xuhai Xu
Chun Yu
ArXivPDFHTML
Abstract

Modern information querying systems are progressively incorporating multimodal inputs like vision and audio. However, the integration of gaze -- a modality deeply linked to user intent and increasingly accessible via gaze-tracking wearables -- remains underexplored. This paper introduces a novel gaze-facilitated information querying paradigm, named G-VOILA, which synergizes users' gaze, visual field, and voice-based natural language queries to facilitate a more intuitive querying process. In a user-enactment study involving 21 participants in 3 daily scenarios (p = 21, scene = 3), we revealed the ambiguity in users' query language and a gaze-voice coordination pattern in users' natural query behaviors with G-VOILA. Based on the quantitative and qualitative findings, we developed a design framework for the G-VOILA paradigm, which effectively integrates the gaze data with the in-situ querying context. Then we implemented a G-VOILA proof-of-concept using cutting-edge deep learning techniques. A follow-up user study (p = 16, scene = 2) demonstrates its effectiveness by achieving both higher objective score and subjective score, compared to a baseline without gaze data. We further conducted interviews and provided insights for future gaze-facilitated information querying systems.

View on arXiv
Comments on this paper