ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.07497
35
0

Towards Subgraph Isomorphism Counting with Graph Kernels

13 May 2024
Xin Liu
Weiqi Wang
Jiaxin Bai
Yangqiu Song
ArXivPDFHTML
Abstract

Subgraph isomorphism counting is known as #P-complete and requires exponential time to find the accurate solution. Utilizing representation learning has been shown as a promising direction to represent substructures and approximate the solution. Graph kernels that implicitly capture the correlations among substructures in diverse graphs have exhibited great discriminative power in graph classification, so we pioneeringly investigate their potential in counting subgraph isomorphisms and further explore the augmentation of kernel capability through various variants, including polynomial and Gaussian kernels. Through comprehensive analysis, we enhance the graph kernels by incorporating neighborhood information. Finally, we present the results of extensive experiments to demonstrate the effectiveness of the enhanced graph kernels and discuss promising directions for future research.

View on arXiv
Comments on this paper